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ABSTRACT

We present a single-step musical tempo estimation system
based solely on a convolutional neural network (CNN).
Contrary to existing systems, which typically first iden-
tify onsets or beats and then derive a tempo, our sys-
tem estimates the tempo directly from a conventional mel-
spectrogram in a single step. This is achieved by fram-
ing tempo estimation as a multi-class classification prob-
lem using a network architecture that is inspired by con-
ventional approaches. The system’s CNN has been trained
with the union of three datasets covering a large variety of
genres and tempi using problem-specific data augmenta-
tion techniques. Two of the three ground-truths are novel
and will be released for research purposes. As input the
system requires only 11.9 s of audio and is therefore suit-
able for local as well as global tempo estimation. When
used as a global estimator, it performs as well as or better
than other state-of-the-art algorithms. Especially the ex-
act estimation of tempo without tempo octave confusion is
significantly improved. As local estimator it can be used to
identify and visualize tempo drift in musical performances.

1. INTRODUCTION

Undoubtedly, the tempo of a musical piece is one of its
main characteristics. Its estimation is often defined as mea-
suring the frequency with which humans “tap” along to the
beat. This is notably different from beat tracking, which
aims at determining individual beat positions. If the tempo
of a musical piece stays constant throughout the whole per-
formance, it is called global tempo. It can be represented
by a single number usually specified in beats per minute
(BPM). Global tempi often occur in genres like Rock, Pop,
and Dance music. The method proposed in this paper was
primarily developed for estimating the tempo of short ex-
cerpts, but can also be applied to global tempo estimation.

Many different approaches to tempo estimation have
been taken in the past. Gouyon et al. [11] provided a
comparative evaluation of the systems that participated in
the ISMIR 2004 contest, the first large-scale evaluation of
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tempo induction algorithms. Five years later, Zapata and
Gómez gave an updated overview [39]. To our knowledge,
the most recent comprehensive evaluations are presented
in [2, 25, 31]. For a textbook-style introduction see [22].

Early tempo estimation methods often combined sig-
nal processing with heuristics. Scheirer [28] for example
used bandpass filters, followed by parallel comb filters, fol-
lowed by peak picking. Klapuri et al. [17] replaced the
conventional bandpass approach with STFTs, producing
36 band spectra. By differentiating and then half-wave rec-
tifying the power in each band, they created band-specific
onset strength signals (OSS), which were then combined
into four accent signals and fed into comb filters in or-
der to detect periodicities. Instead of processing an OSS
with comb filters, several other methods have been pro-
posed. Among them autocorrelation [1, 22], clustering of
inter-onset intervals (IOI) [5, 33], and the discrete Fourier
transform (DFT) [22, 23].

Recent approaches put emphasis on finding not just a
periodicity, but on finding one corresponding to the per-
ceived tempo, trying to avoid common errors by a factor
of 2 or 3, so-called octave errors [11, 31]. The meth-
ods used range from genre classification (e.g., obtained
by a genre classification component) [14, 32], secondary
tempo estimation [30], and the discrete cosine transform
of IOI histograms [7], to machine learning approaches
like Gaussian mixture models (GMM) [24], support vec-
tor machines (SVM) [9, 25], k-nearest neighbor classifica-
tion (k-NNC) [37, 38], neural networks [6], and random
forests [31].

Another area of active research aims at creating a bet-
ter OSS through the use of neural networks. Elowsson [6]
uses harmonic/percussive source separation and two differ-
ent feedforward neural networks to classify a frame as beat
or non-beat. Böck et al. [2] use a bidirectional long short-
term memory (BLSTM) recurrent neural network (RNN)
to map spectral magnitude frames and their first order dif-
ferences to beat activation values. These are then pro-
cessed further with comb filters. For their dancing robot
application, Gkiokas et al. [10] use a convolutional neural
network (CNN) to derive a beat activation function, which
is then used for beat tracking and tempo estimation.

What all these methods have in common is the multi-
step approach of decomposing the signal into sub-bands,
deriving some kind of OSS, detecting periodicities, and
then trying to pick the best one. As Humphrey et al. [15]
point out, this can be described as a deep architecture con-
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Figure 1: Tempo distribution for the Train dataset con-
sisting of LMD Tempo, MTG Tempo, and EBall.

sisting of multiple components (“layers”) that has evolved
naturally. But to the best of our knowledge, nobody has
replaced the traditional multi-component architecture with
a single deep neural network (DNN) yet. In this paper we
describe a CNN-based approach that estimates the local
tempo of a short musical piece or excerpt based on mel-
scaled spectrograms in a single step, i.e., without explicitly
creating mid-level features like an OSS or a beat activation
function that need to be processed further by another, sepa-
rate system component. Using averaging, we can combine
multiple local tempi into a global tempo.

The remainder of this paper is structured as follows:
Section 2 introduces our training datasets. Then Section 3
describes the signal representation, network architecture,
network training, and how we combine multiple local esti-
mates into a global estimate. In Section 4 we evaluate our
global tempo estimation approach quantitatively by bench-
marking against known datasets and state-of-the-art algo-
rithms. Then we discuss local tempo estimation qualita-
tively using samples from different genres and eras. Fi-
nally, in Section 5 we present our conclusions.

2. TRAINING DATASETS

Our goal is to create a general purpose system that does not
suffer from strong genre-bias. Therefore we avoid cross-
validation on small datasets and instead created a large,
multi-genre training dataset, consisting of three smaller
datasets: One derived from a subset of the Lakh MIDI
dataset (LMD) [27], a subset of the GiantSteps MTG key
dataset (MTG Key) [8] 1 , and a subset of the Extended
Ballroom [20] dataset. Two of the derived ground-truths
have been newly created for this paper.

2.1 LMD Tempo

LMD is a dataset containing MIDI files that have been
matched to 30 s audio excerpts. While some of the MIDI
files contain tempo information, none of the audio files are
annotated, and there is no guarantee that associated MIDI
and audio files have the same tempo. Our idea is to cre-
ate a sub-dataset, called LMD Tempo, that can be used for
training supervised tempo induction algorithms. To this

1 https://github.com/GiantSteps/
GiantSteps-mtg-key-dataset

end, we estimated the tempo of the matched audio pre-
views using the algorithm from [31]. Then the associated
MIDI files were parsed for tempo change messages. If the
value of more than half the tempo messages for a given
preview were within 2% of the estimated tempo, we as-
sumed the estimated tempo of the audio excerpts to be cor-
rect and added it to LMD Tempo. This resulted in 3,611
audio tracks. We were able to match more than 76% of the
tracks to the Million Song Dataset (MSD) genre annota-
tions from [29]. Of the matched tracks 29% were labeled
rock, 27% pop, 5% r&b, 5% dance, 5% country,
4% latin, and 3% electronic. Less than 2% of the
tracks were labeled jazz, soundtrack, world and
others. Thus it is fair to characterize LMD Tempo as a
good cross-section of popular music.

2.2 MTG Tempo

The MTG Key dataset was created by Faraldo [8] as a
ground-truth for key estimation of electronic dance mu-
sic (edm), a genre that is very much underrepresented in
LMD Tempo. Each two-minute track in MTG Key is an-
notated with one or more keys and a confidence value
c ∈ {0, 1, 2} for the key annotation. We annotated those
tracks that have an unambiguous key and a confidence of
c = 2 with a manually tapped tempo, which makes it one
of the very few datasets that is suitable for key and tempo
estimation. The resulting dataset size is 1,159 tracks. In
the following we will refer to this new ground-truth as MTG
Tempo.

2.3 Extended Ballroom

The original Ballroom dataset [11] is still used as test
dataset today, which is why we exclude it from train-
ing. Better suited is the recently released and much
larger Extended Ballroom dataset. Because it con-
tains some songs also occurring in Ballroom, we use
the complement Extended Ballroom \ Ballroom.
We refer to the resulting dataset as EBall. It contains
3,826 tracks with 30 s length each. EBall contributes
tracks from genres that are underrepresented or simply ab-
sent from both MTG Tempo and LMD Tempo.

2.4 Combined Training Dataset

Combined, LMD Tempo, MTG Tempo, and EBall have
a size of 8,596 tracks with tempi ranging from 44 to
216 BPM (Figure 1). In the following we will call it
Train. The sweet octave (i.e., the tempo interval [τ, 2τ)
that contains the most tracks [31]) for Train is 77 −
154 BPM, covering 84.4% of the items. The shortest in-
terval that covers 99% of the items is 65 − 204 BPM.
Even though many different tempi are represented, Train
is not tempo-balanced. More than 30% of its tracks have
tempi in the [120, 130) interval. Its mean is µ = 121.32
and the standard deviation σ = 30.52. And while cover-
ing many different genres, Train is not genre-balanced,
either. Genres like jazz and world only have rela-
tively few representatives. But despite these shortcomings,
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Figure 2: Schematic overview of the network architecture.
Three convolutional layers are followed by four mf mod
modules, which in turn are followed by four dense layers.

Train is a very rich, multi-faceted dataset and completely
independent from the test datasets we are going to use for
evaluation in Section 4.1.

3. METHOD

Our proposed method for estimating a local tempo consists
of a single step. Using a suitable representation we classify
the signal with a CNN, which produces a BPM value. We
extend the system for global tempo estimation by averag-
ing the softmax activation function over different parts of
a full track.

3.1 Signal Representation

Although we believe that it is possible to build a system
like ours with raw audio as input [4,19], we choose to rep-
resent the signal as mel-scaled magnitude spectrogram to
reduce the amount of data that needs to be processed by
the CNN. The mel-scale as opposed to a linear scale was
chosen for its relation to human perception and instrument
frequency ranges.

To create the spectrogram, we convert the signal to
mono, downsample to 11,025 Hz and use half-overlapping
windows of 1,024 samples. This is equivalent to a
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Figure 3: Each multi-filter module mf mod consists of a
pooling layer, batch normalization, six different convolu-
tional layers, a concatenation layer and a bottleneck layer.
The activation function for all convolutional layers is ELU.

frame rate of 21.5 Hz, which (according to the Nyquist-
Shannon sampling theorem) suffices to represent tempi up
to 646 BPM—well above the tempi we usually find in mu-
sic. Each window is transformed into a 40 band mel-scaled
magnitude spectrum covering 20 − 5,000 Hz by applying
a Hamming window, the DFT, and a suitable filterbank.
Since musical tempo is not an instantaneous quantity, we
require a spectrogram of a musically sufficient length. As
such we choose 256 frames, equivalent to ≈ 11.9 s.

3.2 Network Architecture

Even though tempo estimation appears to be a regression
problem, we are approaching it as a classification prob-
lem for two reasons. First, a probability distribution over
multiple classes allows us to judge how reliable a given es-
timate is. Additionally, such a distribution is naturally ca-
pable of representing tempo ambiguities [21], allowing for
the estimation of a second best tempo. Second, in infor-
mal experiments we found that a classification-based ap-
proach led to more stable results compared to a regression-
based approach. So instead of attempting to estimate a
BPM value as decimal number, we are choosing one of
256 tempo classes, covering the integer tempo values from
30 to 285 BPM.

The proposed network architecture (Figure 2) is in-
spired by the traditional approach of first creating an OSS,
which is then analyzed for periodicities. In our approach,
we first process the input with three convolutional layers
with 16 (1 × 5) filters each. All filters are oriented along
the time axis using padding and a stride of 1. Using these
fairly short filters, we hope to match onsets in the signal.

These three layers are followed by four almost identical
multi-filter modules (mf mod, Figure 3) each consisting of
an average pooling layer (m × 1), parallel convolutional
layers with different filter lengths ranging from (1 × 32)
to (1 × 256), a concatenation layer and a (1 × 1) bottle-
neck layer for dimensionality reduction. With each of these



Figure 4: Scale-&-crop data augmentation. During train-
ing, the mel-spectrogram is first stretched or compressed
along the time axis, which requires an adjustment of the
ground-truth label, and then cropped to 256 frames at a
randomly chosen offset.

modules we are trying to achieve two goals: 1) Pooling
along the frequency axis to summarize mel-bands, and 2)
matching the signal with a variety of filters that are capable
of detecting long temporal dependencies. Using parallel
convolutional layers with different filter lengths has been
inspired by [26, 35]. In a traditional system, this could be
regarded as some sort of comb filterbank

To classify the features delivered by the convolutional
layers, we add two fully connected layers (64 units each)
followed by an output layer with 256 units. The output
layer uses softmax as activation function, while all other
layers use ELU [3]. Each convolutional or fully connected
layer is preceded by batch normalization [16]. The first
fully connected layer is additionally preceded by a dropout
layer with p = 0.5 to counter overfitting. As loss function
we use categorical cross-entropy. Overall, the network has
2,921,042 trainable parameters.

3.3 Network Training

We use 90% of Train for training and 10% for valida-
tion. To counter the tempo class imbalance and, at the same
time, augment the dataset during training, for each epoch,
we use a scale-&-crop-approach borrowed from image
recognition systems (see e.g., [34]). Contrary to regular
images, the two dimensions of spectrograms have very dif-
ferent meaning, which is why we cannot simply scale-&-
crop indiscriminately. Instead, we have to be careful to ei-
ther not change the labeled meaning of a sample or change
its label suitably (Figure 4). In our case this means that
we have to preserve the properties of the frequency axis,
but may manipulate the time axis. Concretely, we scale
the time axis of the samples’ mel-spectrograms with a ran-
domly chosen factor ∈ {0.8, 0.84, 0.88, . . . , 1.16, 1.2} us-
ing spline interpolation and adjust the ground-truth tempo
labels accordingly. This substantially increases the number

(a) “Honky Tonk Women” by The Rolling Stones

(b) “Rolling in the Deep” by Adele

(c) “Typhoon” by Foreign Beggars/Chasing Shadows

Figure 5: Tempo class probabilities for tracks from differ-
ent genres and eras. (a) The tempo drift of the performance
is clearly visible: the track starts with 108 BPM and ends
with 125 BPM. (b) Very stable tempo of a modern pop
music production. (c) Dubstep track with several no beat
passages, a very active middle section, and halve tempo
intro and outro.

of different samples we can present to the network. Since
the full mel-spectrogram for a sample is longer than the
network input layer (e.g., covering 60 s vs. 11.9 s), we crop
each scaled sample at a randomly chosen time axis offset
to fit the input layer. This again drastically increases the
number of different samples we can offer to the network.
After scaling and cropping, the values of the resulting sub-
spectrogram are rescaled to [0, 1]. In order to ensure com-
parability, time-axis augmentations are skipped during val-
idation.

We define Accuracy0 as the fraction of estimates that
are correct when rounding decimal ground-truth labels to
the nearest integer. To avoid overfitting, we train un-
til Accuracy0 for the validation set has not improved for
20 epochs using Adam (with a learning rate of 0.001,
β1 = 0.9, β2 = 0.999, ε = 1e−8) as optimizer, and then
keep the model that achieved the highest validation Accu-
racy0 (early stopping).



Dataset schr böck new

ACM Mirum 38.3 29.4- 40.6
ISMIR04 37.7 27.2- 34.1
Ballroom 46.8- 33.8- 67.9
Hainsworth 43.7 33.8 43.2
GTzan 38.8 32.2- 36.9
SMC 14.3 17.1 12.4
GiantSteps 53.5- 37.2- 59.8
Combined 40.9- 31.2- 44.8
DS Average 39.0 30.1 42.1

(a) Accuracy0

Dataset schr böck new

ACM Mirum 72.3- 74.0- 79.5
ISMIR04 63.4 55.0 60.6
Ballroom 64.6- 84.0- 92.0
Hainsworth 65.8- 80.6 77.0
GTzan 71.0 69.7 69.4
SMC 31.8 44.7+ 33.6
GiantSteps 63.1- 58.9- 73.0
Combined 66.5- 69.5- 74.2
DS Average 61.7 66.7 69.3

(b) Accuracy1

Dataset schr böck new

ACM Mirum 97.3 97.7 97.4
ISMIR04 92.2 95.0 92.2
Ballroom 97.0 98.7 98.4
Hainsworth 85.6 89.2+ 84.2
GTzan 93.3 95.0+ 92.6
SMC 55.3 67.3+ 50.2
GiantSteps 88.7 86.4- 89.3
Combined 92.2 93.6+ 92.1
DS Average 87.1 89.9 86.4

(c) Accuracy2

Table 1: Accuracies in percent. The ‘+’ and ‘−’ signs indicate a statistically significant difference between either schr
or böck, and new. Bold numbers mark the best-performing algorithm(s) for a dataset. DS Average is the mean of the
algorithms’ results for each dataset.

3.4 Global Tempo Estimation

Since the input layer is usually shorter than the mel-
spectrogram of a whole track, it estimates merely a local
tempo. To estimate the global tempo for a track, we cal-
culate multiple output activations using a sliding window
with half-overlap, i.e., a hop size of 128 frames ≈ 5.96 s.
The activations are averaged class-wise and then—just like
in the local approach—the tempo class with the greatest
activation is picked as the result.

4. EVALUATION

For evaluation, we trained three models and chose the one
with the highest Accuracy0 measured against the valida-
tion set as our final model. As metrics we used Accuracy0
as well as Accuracy1 and Accuracy2, which are typically
used for evaluating tempo estimation systems. Accuracy1
is defined as the fraction of estimates identical to reference
values while allowing a 4% tolerance. Accuracy2 is the
percentage of correct estimates allowing for octave errors
2 and 3 again using a 4% tolerance.

4.1 Global Tempo Benchmarking

It has become customary to benchmark tempo estimation
methods with results reported for a small set of datasets:
ACM Mirum [24], Ballroom [11], GTzan [36],
Hainsworth [12], ISMIR04 [11], GiantSteps
Tempo [18], and SMC [13]. The latter was specifically de-
signed to be difficult for beat trackers. Where applicable,
we used the corrected annotations from [25]. A detailed
description of the datasets is given in [31]. We refer to the
union of these seven datasets as Combined. Unweighted
averages of results for all seven datasets will be referred
to as DS Average. We benchmarked our approach
new with the algorithms by Böck et al. (böck) [2] 2 and
Schreiber (schr) [31]. Table 1 shows the results.

Overall, new achieves the highest results when tested
against Combined with the strict metrics Accuracy0
(44.8%) and Accuracy1 (74.2%). Both accuracy values
are slightly lower when summarized as DS Average.

2 madmom-0.15.1, default options, available at https://github.
com/CPJKU/madmom

When testing with octave-error tolerance, i.e., Accuracy2,
böck reaches 93.6% for Combined, versus 92.2%
reached by schr, and 92.1% reached by new. In essence,
new is better than böck at estimating the tempo octave
correctly, while böck—and to a lesser degree schr—
achieve a slightly higher accuracy when ignoring the met-
rical level. This may be due to the fact that both böck and
schr use a traditional periodicity analysis (DFT and comb
filters, respectively) that tends to be prone to octave errors,
while new does not use a comparable isolated component.

When inspecting the dataset-specific results, we
find that new’s Accuracy1 is particularly high for
Ballroom (92.0%), GiantSteps (73.0%), and
ACM Mirum (79.5%). In fact, they are signifi-
cantly higher than böck’s (+8.0 pp/+14.1 pp/+5.5 pp)
or schr’s (+27.4 pp/+9.9 pp/+7.2 pp) results. Both the
Ballroom and GiantSteps values can be explained
through our training dataset. They clearly correspond to
EBall and MTG Tempo, therefore high values are not
surprising. We believe the same is true for ACM Mirum
and LMD Tempo. To us these results indicate that a genre-
complete training set may lead to better results for the other
datasets as well. This hypothesis is supported by the fact
that GTzan contains genres like reggae, classical,
blues, and jazz, and Hainsworth contains the gen-
res choral, classical, folk, and jazz—none of
which are well represented in Train. For both datasets
new performs worse than böck or schr. A similar con-
nection may exist for böck and GiantSteps—as far as
we know, böck has not been trained on edm.

4.2 Local Tempo Visualization

To illustrate the system’s performance for continuous lo-
cal tempo estimation, we analyzed several tracks from dif-
ferent genres using overlapping windows with a relatively
small hop size of 32 frames, i.e., ≈ 1.5 seconds. For clar-
ity, we cropped the images at 50 and 150 BPM. Figure 5a
beautifully reveals the tempo drift in The Rolling Stone’s
1969 performance of “Honky Tonk Women”, starting out
at 108 BPM and ending in 125 BPM. In contrast, Adele’s
recent studio production “Rolling in the Deep” (Figure 5b)
stays very stable at 105 BPM. A more complicated picture
is presented by the dubstep track “Typhoon” by Foreign
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Beggars/Chasing Shadows (Figure 5c). After several sec-
onds of weather noises, the intro starts with 70 BPM. The
main part’s tempo is clearly 140 BPM interrupted by two
sections with no beat. The outro again feels like 70 BPM
followed by a fade out.

5. CONCLUSIONS

We have presented a single-step tempo estimation system
consisting of a convolutional neural network (CNN). With
a conventional mel-spectrogram as input, the system is ca-
pable of estimating the musical tempo using multi-class
classification. The network’s architecture consolidates tra-
ditional multi-step approaches into a single CNN, avoid-
ing explicit mid-level features such as onset strength sig-
nals (OSS) or beat activation functions. Consequently and
contrary to many other systems, our approach does not
rely on handcrafted features or ad-hoc heuristics, but is
completely data-driven. The system was trained with sam-
ples from the union of several large datasets, two of which
were newly created. To aid training, we applied problem-
specific data augmentation techniques. For global tempo
estimation, we have shown that our single network, data-
driven approach performs as well as or better than other
more complicated state-of-the-art systems, especially w.r.t.
Accuracy1. Furthermore, by visualizing examples for lo-
cal tempo estimations, we have demonstrated qualitatively
how the system can aid music analysis, e.g., to identify
tempo drift.

We believe that the system can be improved even fur-
ther by training with a more balanced dataset that con-
tains tracks for all tested genres. Notably missing from the
current training set are jazz, classical, or reggae
tracks. Another area of potential improvement is the net-
work architecture. Shorter filters, dilated convolutions,
residual connections, and a suitable replacement for the
fully connected layers might be used to reduce the number
of parameters and thus the number of operations needed
for training and estimation.
Additional Material
Datasets are available at http://www.tagtraum.
com/tempo_estimation.html. Code to estimate
tempi and create tempograms is available at https://
github.com/hendriks73/tempo-cnn.
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