
jo!
User Guide

1.1beta1

Please send all comments to <feedback@tagtraum.com>

1

tagtraum industries incorporated

jo! 1.1beta1 User Guide

Copyright © 1999-2005 by tagtraum industries incorporated

http://www.tagtraum.com/

All trademarks and registered trademarks herein are the property if their respective owners

2

License
jo! is free software; you can redistribute it and/or modify it under the terms of the GNU
Lesser General Public License as published by the Free Software Foundation; either version
2.1 of the License, or (at your option) any later version.

jo! is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without
even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE. See the GNU Lesser General Public License for more details.

You should have received a copy of the GNU Lesser General Public License along with this
library; if not, write to the Free Software Foundation, Inc., 59 Temple Place, Suite 330,
Boston, MA 02111-1307 USA

For LGPL see <http://www.fsf.org/copyleft/lesser.txt>

Beta version disclaimer
This version of jo! is made available as a beta version. This means that this version is mostly
stable. The documentation may or may not be correct or complete.

3

Content

1. Introduction..7

1.1 What are servlet containers anyway?...7

1.2 Who the heck is jo?...7

1.3 Why should I use jo? Aren’t plugins for my existing high performance server a better solution?.......7

1.4 Features..7

1.5 System requirements..8

2Architecture..9

2.1 Server..9

2.2 Listeners..9

2.3 Hosts...9

2.4 Web Applications...9

2.5 Servlets, JSP and other Resources..9

3Getting started...10

3.1 Starting jo!...10

3.2 Starting without GUI..11

3.3 Starting jo! as MBean..11

3.4 Publishing static content..11

3.5 Installing a servlet..11
3.5.1 Initialization parameters..11
3.5.2 Preloading a servlet...12
3.5.3 Automapping..12
3.5.4 Remote servlet loading..12
3.5.5 Instance pooling...12

3.6 Mapping a URI to a servlet..12

4Web Applications...14

4.1 Webapp Structure...14

4.2 web.xml...14

4.3 jo.xml...14

4.4 Automapping...16

4

4.5 Autoreloading..16

4.6 Compressed transport...16

4.7 Automatic internationalization...16

4.8 Showindex...17

4.9 Restore Sessions..17

4.10 No Session Cookies..17

4.11 Session Cookie Domain..17

4.12 Archives...17

4.13 Deploying a WAR..17

5JSP Support...19

5.1 Java compiler..19

5.2 Autoreloading..20

5.3 Send errors to client..20

5.4 Code-Generators..20

6Security...21

6.1 Example for a deployment descriptor using security..21

6.2 Roles, users and groups...22

6.3 Using JAAS...23

6.4 Howto write your own Authentication/Authorization..23

6.5 General security..24

7Virtual Hosts...26

8Server properties...27

8.1 The server log...27

8.2 Handlers..27

8.3 Persistent connections..28

8.4 Versions..28

8.5 Factory..28

8.6 File cache..28

5

8.7 Authenticators...29

8.8 Changing the user after starting jo!...29

9Configuring a listener..30

9.1 Setting the port..30

9.2 Setting the bind address...30

9.3 Backlog ...30

9.4 Listenerclass...30

9.5 Using a secure protocol (e.g. SSL)...30

9.6 How to get a signed certificate from a certification authority (CA)..31

10Servlets...32

10.1 Status..32

10.2 CGI..32

10.3 Invoker..32

11Debugging with jo!...33

12Building jo! from source...35

13Integration..36

13.1 Embedding jo! in other applications..36

13.2 JBoss..36

13.3 Avalon-Phoenix...37

14 Starting and stopping jo! from a remote machine...38

15 Running jo! behind a proxy...39

16 Setting VM parameters...40

17 Setting the browser for viewing the documentation.......................................41

18 Loadbalancing...42

19 Performance-Tuning...44

6

20 Feedback and mailing list..45

21 References..46

7

1. Introduction
In this section of the user guide we would like to make you familiar with some basic
concepts.

1.1 What are servlet containers anyway?

Servlet containers are part of the Java 2 Enterprise Edition (J2EE™) platform defined by
Sun. In a business application that utilizes J2EE™ it is the servlet container’s task to provide
a connection from the actual application (business logic) to the web. This is achieved
through the use of servlets, JavaServer™ Pages (JSP) and other static or dynamic
resources such as databases or simple files. J2EE™ propagates the use of EJB™, JNDI™
etc. in conjunction with servlets and JSP, but leaves the choice to the developer. He/she
does not have to use EJB™, but can use whatever technology he/she believes to suite
his/her needs. Because of this, servlets are often referred to as the glue between legacy
code, new technologies and the web.

Servlet containers (pre J2EE™-speak: servlet engines) are a standardized platform to build
this glue on. They have to comply with the Servlet API specified by Sun™ and are the
environment to execute servlets, JSP and even entire web applications (WARs) in.

1.2 Who the heck is jo?

jo! is the servlet container you probably just downloaded. It is a web server written entirely in
Java that is compatible to Servlet API 2.3.

At first jo! was developed, because Hendrik Schreiber and Peter Roßbach were writing a
book about servlet programming (Java Server and Servlets, AWL) and needed a Servlet API
2.1 implementation to experiment with. Because none was available, they decided to write
their own and called it jo! It was the first implementation of the brand new API.

In the beginning jo! was small and quite beautifully designed. For example you could
exchange many classes just by editing a configuration file. We believe its design is still
stylish, but it got bigger, faster and more compatible to specifications. In other words: jo!
grew up.

1.3 Why should I use jo? Aren’t plugins for my existing high performance
server a better solution?

Not necessarily. High performance servers probably beat jo! when you deal with pure static
content. But when you need to execute servlets or JSP you have to consider that the server
first has to parse the content, then it needs to decide whether it is the plugin’s job or not. If it
is the plugin’s job the request has to be transported (possibly over an expensive TCP
connection) to the plugin and the plugin needs to parse the request again. This is quite an
effort you do not have to make. If your server is written in pure Java it does not need any
plugins.

1.4 Features

• HTTP/1.1 including persistent connections, pipelining, byte ranges, virtual hosts, etc. as
defined in RFC 2616

• Memory sensitive file cache

• Basic and Digest authentication as defined in RFC 2617

• SSL

8

• Servlet API 2.3 as defined by Sun™

• JSP 1.2 support

• Restoring of serializable sessions after shutdown

• Autointernationalization

• Automatic compression of textual data

• Support for archived web applications (WARs)

• Automatic reload of WARs

• Web applications can be pointed at with an URL

• Drop-in/hot-deployment for WARs

• Drag and drop deployment

• Automatic reloading of servlets and JSP

• Advanced thread management and very good performance

1.5 System requirements

jo! has been tested under Win 2k with Sun JDK 1.4. However, it has been reported that jo!
works fine under all kinds of systems and in general it is expected that it runs under any
Java 2 compliant system. There are scripts provided to run jo! in a Unix environment.

9

2 Architecture
jo! consists of different parts. First of all there is the web server. The server has at least one
listener and at least one host. Each host has one or more web applications or
ServletContexts (these are rough synonyms). Each web application consists of servlets, JSP
and other static or dynamic resources.

2.1 Server

The server is the actual root object of jo! It can have one or more listeners to accept
requests and has one or more hosts to dispatch these requests to.

2.2 Listeners

Listeners are objects that listen to a specific port/address pair and return incoming
connections to the server. You can have more than one listener per server in order to listen
on multiple ports and multiple IP addresses. This is especially useful when you want to
access the same content in different ways, e.g. over a plain connection and a SSL
connection. One could also imagine a server with multiple IP addresses. There should be a
listener for each address you want your server to listen on.

2.3 Hosts

In order to save IP addresses HTTP supports multiple virtual hosts on servers with only a
single IP address. Therefore a server can have multiple hosts, each acting like a single
server.

2.4 Web Applications

Web applications or ServletContexts are usually mapped to a host’s URI space. E.g. you can
map all URIs beginning with /~user/ to a certain ServletContext. Or all URIs starting with /
catalogue/ to a web application. ServletContexts enable servlets to share data more
easily and therefore provide a mean to act as a collection of interacting resources rather
than isolated programs.

2.5 Servlets, JSP and other Resources

Servlets, JavaServer Pages and other resources are always part of a web application. They
can access each other easily. Additionally servlets and JavaServer Pages may use other
objects or components to fulfill a task. They often simply request data from such other
components and produce some HTML output.

10

3 Getting started
This chapter will help you make your first steps with jo! Please read it carefully. Most of your
question will probably be answered in here.

3.1 Starting jo!

To start jo! change to the jo directory and execute the script jo1. A Swing™ window will pop
up and the server will start. If your system is not connected to a domain name server (DNS)
this might take a while, because the system tries to find all IP addresses available on the
system.

On OS X please drag the application from the disk image onto your harddrive. jo! requires
an installation location that allows it to create and write to files.

You should now be able to open the URL http://127.0.0.1:8080/ with your favorite browser.

Note for Windows 95/98/ME users: It is likely that the initial memory for the
environment is not big enough. To change that, right-click on jo.bat, click
Properties, choose the tab Memory and change the value for Initial
Environment from auto to 1024. By this a shortcut will be created in the same

directory. Doubleclick on this shortcut to start jo!.

1 All scripts mentioned have either .sh or .bat as file extension. Please choose the appropriate
version for your operating system.

11

3.2 Starting without GUI

Starting a Swing™ window has a lot of overhead. Therefore a non-graphical way to start jo!
is provided. Simply execute the script jo_ng in the jo directory. In order to stop jo!, execute
the script stopjo in the same directory.

3.3 Starting jo! as MBean

If you have a MBean server available you can start jo! as a managed bean. For this purpose
the class com.tagtraum.jo.Jo and the interface com.tagtraum.jo.JoMBean are
provided. They allow you to initialize, start, stop, and destroy the server.

If you want to use this feature you need to make sure that the VM is started with the extra
parameter JO_HOME set to the jo! home directory, e.g.:

java –DJO_HOME=c:\jo1.1 –classpath …

3.4 Publishing static content

In order to publish, simply place your files in the directory webapp/host/root/. They are
now accessible through the server as part of the default ServletContext.

As any server jo! marks resources it delivers with a content type. To help the server setting
the right content type, you might have to edit the file mime.properties in the jo directory
etc. It defines a mapping from file extensions such as *.htm to mime types such as
text/html.

3.5 Installing a servlet

To install a servlet you have to place your classes into
JO_HOME/webapp/host/root/WEB-INF/classes/ and/or your jars into
JO_HOME/webapp/host/root/WEB-INF/lib/.

Then edit the file web.xml2 in JO_HOME/webapp/host/root/WEB-INF. Look for the
<web-app></web-app> section and insert lines similar to these:

<servlet>
<servlet-name>

HelloWorld
</servlet-name>
<servlet-class>

com.tagtraum.jo.servlets.HelloWorld
</servlet-class>

</servlet>

The servlet class has to be either in the CLASSPATH, in webapp/host/root/WEB-
INF/classes/ or in webapp/host/root/WEB-INF/lib/foo.jar. Note that classes in
CLASSPATH will not be reloaded when jo! is restarted while the other ones will. Also note,
that in order to actually execute the servlet, you have to provide a mapping between a URI
and a servlet. How this is done is explained in sections 3.6 and 4.4.

3.5.1 Initialization parameters

In order to initialize a servlet you can pass parameters to it. These are specified through the
<init-param>-tag:

2 You might want to use an XML editor for editing the XML files. An overview of editors can be found at
http://www.xmlsoftware.com/editors/

12

<servlet>
…

<init-param>
<param-name>

aParameterName
</param-name>
<param-value>

aParameterValue
</param-value>

</init-param>
</servlet>

You can specify multiple <init-param>-tags per servlet.

3.5.2 Preloading a servlet

If you want the container to instantiate a servlet at startup, you can add the <load-on-
startup>-tag to the <servlet>-tag:

<servlet>
…
<load-on-startup/>

</servlet>

By including a positive number in the <load-on-startup>-tag you can influence the order
in which servlets are loaded.

3.5.3 Automapping

This option has been removed in favor of 4.4

3.5.4 Remote servlet loading

This feature is no longer supported, because it inherently produces
ClassCastExceptions.

3.5.5 Instance pooling

If a servlet implements the interface SingleThreadModel it is not threadsafe and jo!
automatically builds a pool of instances. The default maximum number of instances is 10.

3.6 Mapping a URI to a servlet

After you registered the servlet you still have to tell the server how this servlet should be
mapped to a URL or URI. I.e. if you want to execute a certain servlet with the URL
http://127.0.0.1:8080/MyServlet you will have to define a mapping.

In order to do so you have to edit the file web.xml in webapp/host/root/WEB-INF.
Within the <web-app></web-app>-tags this file contains <servlet-mapping>-tags,
which in turn contain a <servlet-name> and a <url-pattern> tag. There are four kinds
of url-patterns:

1. Exact match

2. Prefix match

3. Suffix match

4. Default match

13

An exact match pattern simply starts with a ‘/’. A prefix pattern starts with a ‘/’ and ends
with a ‘/*’. Suffixes start with ‘*.’ and the default pattern is a simple ‘/’.

When a request is accepted, the servlet container first tries to find an exact match, then a
prefix match, followed by a suffix match. If everything fails, the default match is used. By
default the default match is initialized with jo!’s file servlet.

The example shows several possible mappings:

<servlet-mapping>
<servlet-name>

HelloWorld
</servlet-name>
<!-- Exact Path Mapping -->
<url-pattern>

/HelloWorld
</url-pattern>

</servlet-mapping>
<servlet-mapping>

<servlet-name>
EcommerceServlet

</servlet-name>
<!-- Prefix Mapping -->
<url-pattern>

/catalogue/*
</url-pattern>

</servlet-mapping>
<servlet-mapping>

<servlet-name>
JSPServlet

</servlet-name>
<!-- Suffix Mapping -->
<url-pattern>

*.jsp
</url-pattern>

</servlet-mapping>
<servlet-mapping>

<servlet-name>
VerySpecialFileServlet

</servlet-name>
<!-- Default Mapping -->
<url-pattern>

/
</url-pattern>

</servlet-mapping>

You should now be able to map a servlet to a URI.

Note that for rapid development you can also use the Invoker servlet (see 10.3).

14

4 Web Applications
jo! realizes the concept of web applications defined in Servlet API 2.3. i.e. you can put your
applications in jars and manipulate their behavior through configuration files.

4.1 Webapp Structure

To learn about the structure, simply look at the folder webapp/host/root/ – it contains the
default web application. In it you find regular files and a special folder called WEB-INF. In
this folder all classes, configuration files and other resource reside. jo! expects to find two
files. These are called web.xml and jo.xml. While web.xml needs to be present,
jo.xml does not. Additionally you can add two folders called lib and classes. lib might
contain jars, classes should contain classes. Note that classes located in these two folders
are loaded with a web application specific classloader.

Please take a look at the servlet spec 2.3
(http://java.sun.com/products/servlet/download.html#specs) to learn about the format of
web.xml. Note that several J2EE related tags are not supported. These are: <resource-
ref>, <env-entry> and <ejb-ref>.

4.2 web.xml

jo! supports the automatic reloading of WARs, if they come in a single file and are accessible
through the local system.

4.3 jo.xml

Additionally to the parameters defined in web.xml you can set some jo! specific parameters
in the file jo.xml located in the same folder as web.xml. The current DTD
(http://www.tagtraum.com/dtds/jo-web-app_1.1.dtd) of the file looks like this:

<!-- The jo-web-app element is the root of the deployment
descriptor for a web application -->

<!ELEMENT jo-web-app (auto-internationalization?, auto-
mapping?, auto-reload-servlets?, file-transfer-compression?,
show-index?, jsp-config?, restore-sessions?, session-cookie-
domain?, no-session-cookies?)>

<!-- If this tag is present jo! will try to auto-
internationalize requests. I.e. if there is a request for
index.html and the preferred language of the user is German,
it will look for the file index_de.html and deliver it, if
it exists. -->

<!ELEMENT auto-internationalization EMPTY>

<!-- Indicates that servlets and JSP should be automatically
reloaded whenever their class/source files change. Note that
this seriously decreases performance. -->

<!ELEMENT auto-reload-servlets EMPTY>

<!-- Indicates that all servlets should also be mapped to
the stated directory/servletname. E.g.: "/servlets/" -->

<!ELEMENT auto-mapping (#PCDATA)>

<!-- Controls the compression of static files. -->

15

<!ELEMENT file-transfer-compression (algorithm, repository,
extension+)>

<!-- States the algorithm to use. Currently the only legal
value is gzip. -->

<!ELEMENT algorithm (#PCDATA)>

<!-- Path to the repository to store compressed files in. --
>

<!ELEMENT repository (#PCDATA)>

<!-- Files with the extension should be compressed. E.g.:
txt -->

<!ELEMENT extension (#PCDATA)>

<!-- Sets whether a table of contents for a directoty should
be shown to the user or not. This feature only has an effect
if the web-app is local and not in a jar. -->

<!ELEMENT show-index EMPTY>

<!-- Flag indicating that session should be serialized and
saved to disc when the webapp is shut down and loaded when
it is restarted. -->

<!ELEMENT restore-sessions EMPTY>

<!-- Flag indicating that this application exclusively
relies on URL rewriting instead of cookies.-->

<!ELEMENT no-session-cookies EMPTY>

<!-- Lets you specify a domain for the session cookie -->

<!ELEMENT session-cookie-domain (#PCDATA)>

<!-- Controls the behavior of the jsp engine for this web
application. -->

<!ELEMENT jsp-config (compiler-command?, scratch-dir, send-
error-to-client?, generators?)>

<!-- Sets the compiler command to use. %scratchdir%, %
classpath% and %encoding% will be replaced by the engine. --
>

<!ELEMENT compiler-command (#PCDATA)>

<!-- Name of the directory with source and class files of
the jsp in. -->

<!ELEMENT scratch-dir (#PCDATA)>

<!-- Flag indicating that detailed error messages including
stacktraces should be sent to the client. -->

<!ELEMENT send-error-to-client EMPTY>

<!-- Registers Sourcecode Generators for JSP -->

<!ELEMENT generators (language?, classname)>

16

<!-- Name of a language for which to generate code. Defaults
to java. -->

<!ELEMENT language (#PCDATA)>

<!-- Fully qualified name of a class -->

<!ELEMENT classname (#PCDATA)>

4.4 Automapping

With the tag <auto-mapping> you can make sure that all servlets are automatically
mapped to a given path like /servlet/<servletname> or /
servlets/<servletname>. To do so you have to set the element <auto-mapping> to the
desired path, e.g.: /servlet/. Basically the parameter will serve as a prefix to the
servletname. To map servlets to a path like /invoker/<classname> see 10.3.

Note that jo! controls access to resources based on URL patterns. So don’t forget
to protect /servlet(s)/...-like URLs if necessary.

4.5 Autoreloading

With the tag <auto-reload-servlets/> you can indicate that you want the engine to
check whether class files of servlets or source files of JSPs have changed and need to be
reloaded. If the tag is present, servlets and JSP are automatically reloaded.

Note that this means that the classloader for a specific servlet is removed and a
new classloader is instantiated. Within a webapplication this can lead to
ClassCastExceptions. This will not happen when the whole application is
restarted, e.g. when a jar is exchanged or the restart button in the GUI is hit. Also

note that auto-reloading decreases the performance significantly.

4.6 Compressed transport

There is a mechanism in jo! which lets you automatically compress static files before
transfer, if the user agent is capable of accepting compressed data. Especially when you
need to transport a lot of textual data like HTML or ASCII texts it saves quite a bit of
bandwidth. To benefit from this mechanism you have to specify a list of file extensions to
specify the kind of files you wish to compress before transfer. This is done via the tag
<file-transfer-compression>. Because compressing is usually a very expensive
task, jo! stores compressed versions of your files in a repository. To specify the location of
this repository use the tag <repository> inside of <file-transfer-compression>. To
specify the file types you want to compress, you can use (multiple) <extension>-tags. You
can also specify multiple algorithms to use. For now you must specify gzip.

Example:

<file-transfer-compression>
<repository>./compressed_files</repository>
<algorithm>gzip</algorithm>
<extension>txt</extension>

</file-transfer-compression>

Netscape Browsers (<=4.7x) do not seem to load linked-in stylesheets when
using compressed transport.

17

4.7 Automatic internationalization

Todays websites often have to live in different languages. Therefore jo! supports a
mechanism that automatically chooses the most suitable version of a static file or a JSP for a
given request. To profit from autointernationalization you have to place different versions of
your resource in each folder. If welcome_en.html contained an English version of a
welcome file, welcome_de.html should contain the German version. Additionally the file
welcome.html must contain a default version. The same pattern applies to all other
resources. Note that this pattern corresponds to the one used in
java.util.ResourceBundle. The language codes are taken from ISO 639
(http://www.ics.uci.edu/pub/ietf/http/related/iso639.txt).

To turn this feature on or off, please set the <auto-internationalization/> tag.

In case you wonder how it is done – it is simple. Most user agents, i.e. browsers, send a
header called Accept-Language when requesting a document. This header is analyzed,
the appropriate file is searched for and delivered.

4.8 Showindex

If you want jo! to automatically show a table of contents of a folder, you have to set the
<show-index/> tag.

4.9 Restore Sessions

If <restore-sessions/> is present, the webapp tries to automatically save all sessions
into a file when it is shut down. This file is then loaded when the webapp is restarted. Note
that sessions and their contents must be serializable for this feature to work.

4.10 No Session Cookies

If <no-session-cookies/> is present, the webapp will not use session cookies for
keeping state, but instead will try to entirely rely on URL rewriting.

4.11 Session Cookie Domain

The value specified in <session-cookie-domain>mydomain.com</session-cookie-
domain> is used for the domain of the session cookie. If specified, you can make sure that
the cookies is sent to different servers of the same domain.

4.12 Archives

Web applications can be put into a single archive called WAR (Web Application ARchive). To
build this archive you should use the jar tool provided by Sun™. Another great way to build
WARs is the war task in the java based build tool Ant3.

4.13 Deploying a WAR

There are two ways to deploy a WAR with jo! – an easy one and a more flexible one.

Either you create a directory <JO_HOME>/webapp/<hostname>/ and drop the WAR file
right in there. For deployment you don’t even have to restart the server. It will be reloaded
every time it is replaced and you can even manipulate the extracted files you will find in the
same directory once you have started jo! A webapplication MyApp.war will be accessible
under http://127.0.0.1:8080/MyApp/, i.e. the mapping is /MyApp. Note that a WAR

3 http://jakarta.apache.org/ant/index.html

18

called root.war will be mapped to http://127.0.0.1:8080/, i.e. the root of the URI
space.

Or you can edit the file hosts.properties (see also section 7) in folder etc. Just add the
following two lines:

<hostname>.webapp.<webappname>.mapping=<URI prefix not
ending with ‘/’>
<hostname>.webapp.<webappname>.docbase=<URL>

The first line defines where in the URI space of the server the web application
should be located. It is important that this URI prefix does not end with a ‘/’. The
second line specifies where the actual files are located. Here you can set a URL
pointing at a WAR or a folder. Note that if you want to point at a folder, you need

to add a trailing slash. Also please note that under windows an absolute URL pointing at a
local file has the following form: file:/<drive>:/[path/]<file>

Note that both docbase and mapping support system property expansion. I.e. strings like %
user.home% are automatically expanded.Note that both docbase and mapping support
system property expansion. I.e. strings like %user.home% are automatically expanded.

If you are using jo!'s Swing console, you can also deploy an application by simply dragging
the WAR file onto the host or hostpanel you want to deploy to. You will then have to decide
whether you want jo! to copy the application to the host's webapp directory or whether you
want to start the application from its current location. If you choose to start the application
from its current locations it will not be automatically re-started after a server re-start. To
permanently add the application to the server, you will need to either copy it to the webapp
directory or manually deploy it by modifying the hosts.properties file as described
above.

19

5 JSP Support
jo! supports JSP 1.2 including tag libraries. You can find some examples for JSPs in the
webapp/host/root/examples/ folder. An example tag library is provided in the package
com.tagtraum.taglib.

For details about how to develop with JSP please take a look at e.g.
http://directory.google.com/Top/Computers/Programming/Internet/JSP/Tutorials/ and
http://java.sun.com/products/jsp/. We also recommend taking a look at Struts
(http://jakarta.apache.org/struts/).

As the support is built in, you don’t need to install a specific servlet. Note that the JSP engine
is configured with the entries in the file jo.xml (see 4.2). A typical configuration looks like
this:

<jsp-config>
<scratch-dir>jsp_scratch_dir</scratch-dir>
<send-error-to-client/>

</jsp-config>

5.1 Java compiler

The JSP engine will automatically detect the Sun compilers sun.tools.javac.Main
(classic) and com.sun.tools.javac.Main (modern). To use these compilers you should
add the archive JAVA_HOME/lib/tools.jar to your classpath. This archive is only
included in the JDK distribution of Java, but not in the JRE.

Additionally, jo! will search in your current path for the fast IBM compiler jikes. If you have
trouble using jikes you should add the archive JAVA_HOME/jre/lib/rt.jar to your
classpath.

If the JSP servlet neither finds the modern or the classic Sun compilers nor jikes it will look
for javac in your path. If no compiler is found at all, an exception is thrown.

Please note that jo! uses jikes over any other compiler even if it finds a compiler by Sun,
because it seems to be the fastest compiler available today.

If your compiler is not matched by the detection process or you want to override it, you can
specify a compiler by adding the <compiler-command> tag. The strings %encoding%, %
classpath%, %source% and %outputdir% will be substituted by the engine.

Example:

<jsp-config>
<compiler-command>/myPath/mySpecialJavaCompiler –cp %

classpath% -output %outputdir% -enc %encoding% %source%
</compiler-command>
</jsp-config>

Note that some versions of jikes do not properly support unicode. Therefore you
might run into trouble when you use a non-latin characterset (e.g. Shift_JIS) in
your JSP. Please check the jikes homepage
(http://oss.software.ibm.com/developerworks/opensource/jikes/project/) for the

latest version of jikes. jikes also does not seem to support spaces in pathnames. If you
experience VerifyErrors while using jikes, consider getting a newer version (>=1.15) or
switch to another compiler. However, jo! will automatically try to use a different compiler, if
VerifyErrors are encountered. You will find a corresponding note in the log file.

20

If you are unsure about which compiler jo! uses, please check the log file.

Note that the compiler command additionally supports system property expansion. I.e.
strings like %user.home% are also automatically expanded.

5.2 Autoreloading

The JSP engine supports autoreloading of JSP. Whenever the source file or one of the
included files are changed the JSP will be recompiled. This feature is not activated by
default. To turn it on you have to set the tag <auto-reload-servlets/> in jo.xml. Note
that turning autoreloading on can significantly decrease the performance, as the server has
to access the filesystem quite often. See 4.5

5.3 Send errors to client

To send detailed error messages regarding JSP to the client you can set the tag <send-
error-to-client/>. This includes stacktraces and should be turned off in a production
environment. You will find the same messages including stacktraces in the log.

5.4 Code-Generators

With this tag you can register your own code generator for JSP. A code generator class has
to implement the interface com.tagtraum.jo.jsp.JspGenerator and has to have a no-
arg constructor. The default implementation is
com.tagtraum.jo.jsp.JspJavaGenerator.

21

6 Security
jo! offers basic and digest authentication as defined in RFC 2617 and form based
authentication as defined in the servlet spec 2.3. Please note that form based and basic
authentication are not secure and digest authentication, which is a bit more secure, is not
supported by all browsers. If you use either one exclusively over a secure protocol such as
HTTPS (HTTP over SSL – see Chapter 9 for details on configuring SSL) they are considered
to be secure.

However, in order to use authentication you have to define what to protect by editing the file
webapp/host/root/WEB-INF/web.xml.

Please note that any roles referred to in the servlet or jsp code must be registered with
<security-role-ref>s in the <servlet> section pointing at a <security-role>
defined within the <web-app> container. I.e.: <security-role-ref> points at
<security-role> and <security-role> points at the actual names defined in
roles.properties (see 6.2).

6.1 Example for a deployment descriptor using security

How the security features used in the web.xml work exactly is described in the DTD
(http://java.sun.com/j2ee/dtds/web-app_2_2.dtd) and the servlet spec 2.3
(http://java.sun.com/products/servlet/download.html#specs). To give you an impression on
how it works, you might want to take a look at the following example.

<!DOCTYPE web-app PUBLIC "-//Sun Microsystems, Inc.//DTD Web
Application 2.2//EN" "http://java.sun.com/j2ee/dtds/web-
app_2_2.dtd">

<web-app>
<!-- define a security role -->
<security-role>

<role-name>admin</role-name>
</security-role>
<servlet>

<servlet-name>adminservlet</servlet-name>
<servlet-class>

com.tagtraum.AdminServlet
</servlet-class>
<security-role-ref>

<!-- role name used in code -->
<role-name>ADM</role-name>
<!-- reference to the role defined in this

descriptor (above) -->
<role-link>admin</role-link>

</security-role-ref>
</servlet>
<servlet-mapping>

<servlet-name>adminservlet</servlet-name>
<url-pattern>/adminapp/*</url-pattern>

</servlet-mapping>
<!-- Use HTTP BASIC authentication for login -->
<login-config>

<auth-method>BASIC</auth-method>

22

<realm-name>basicRealm</realm-name>
</login-config>
<security-constraint>

<web-resource-collection>
<web-resource-name>

SecureAdminExample
</web-resource-name>

<!-- restrict access to URIs matched
by uri-patterns to certain
http-methods and roles -->

<url-pattern>/adminapp/*</url-pattern>
<http-method>GET</http-method>
<http-method>POST</http-method>
<auth-constraint>

<!-- reference to the role defined in
this descriptor (above) -->

<role-name>admin</role-name>
</auth-constraint>

</web-resource-collection>
</security-constraint>

</web-app>

The deployment descriptor defines a servlet named adminservlet and maps it to the URIs
starting with /adminapp/. It also defines that, if the servlet calls the method
request.isUserInRole("ADM"), the hardcoded rolename should be mapped to the
rolename admin. This role has been registered with the tag <security-role>. This
indirection is necessary in order to use hardcoded rolenames in your sourcecode, which then
can be mapped to any role in your deployment environment.

The deployment descriptor also makes sure that all requests for resources, whose URI start
with /adminapp/, have to be either GET or POST requests and the requestor has to be in
the role admin.

6.2 Roles, users and groups

jo! uses a role based authentication scheme. This means that you have to map users and
groups to roles. These roles are the basis for restricting and providing access to a resource.
The advantage is that a user does not have to re-authenticate himself each time he enters a
new application on the same server. The server knows who he is – the only question is,
whether the user is in a certain role or not.

To define roles you have to edit the file roles.properties in etc. But before you do that
you should register some users. This can be done with the script called user.

Please be aware of the fact that this script is a better-than-nothing solution – it is
commandline based and does not hide passwords as you type them.

However, with the script you can manipulate the file users.properties in folder etc. You
can add and modify entries and provide passwords. The passwords are not stored in clear
text, but only as hash values. This means, that the passwords are only recoverable with a
brute force attack.

Now that you have defined some users, you can group them together by editing the file
groups.properties in etc. The entries should look like this:

23

<groupname>=<comma delimited list of groups and/or users>

Note that groups and users share the same namespace. This means that a user cannot
have the same name as a group.

To define a role, proceed the same way as with groups. Just edit roles.properties in
etc:

<rolename>=<comma delimited list of groups and/or users>

6.3 Using JAAS

For authenticating users jo! can use JAAS (Java Authentication and Authorization Service –
http://java.sun.com/products/jaas). JAAS is an optional extension for JDK 1.3.x and has
been incorporated into JDK 1.4. However, this version of jo! comes bundled with the
extension (JO_HOME/lib/jaas.jar and the sample JndiLoginModule
JO_HOME/lib/jaasmod.jar).

In order to use JAAS you have to do some configuring.

First edit the file JO_HOME/etc/factory.properties. You have to replace the line

AccessController=com.tagtraum.jo.security.JoFileUserManager

with the line (written as one line)

AccessController=
com.tagtraum.jo.security.JoJAASAccessController

Then edit the file JO_HOME/etc/sample_jaas.config. You have to set the classname of
the JAAS loginmodule you want to use. Depending on the module, you might have to specify
some parameters. E.g. for the sample JndiLoginModule provided by Sun™ (which is
included in this distribution) the file might look like this:

jo {

com.sun.security.auth.module.JndiLoginModule
required
debug=true
user.provider.url="ldap://hostname/LDAPName"
group.provider.url="ldap://hostname/LDAPName";

};

Where hostname could be ldap.tagtraum.com and LDAPName
ou=People,o=tagtraum,c=DE or ou=Groups,o=tagtraum,c=DE, respectively.

Now you have to tell JAAS where to look for the JAAS configuration file. This can be
achieved by adding the following parameter to the startup script (jo or jo_ng):

-Djava.security.auth.login.config=<your JAAS config file>

You have to place it after the classpath and before the main class.

Please note that the provided JAAS based authentication is only an example. It is not an
industry strength implementation for the following reasons:

• All Principals are cached - i.e. this implementation is not suited for millions of users.

• Groups are not supported by this implementation.

Please also note that the NTLoginModule and SolarisLoginModule provided by Sun as
examples for the JAAS 1.0 release are not suited for authentication for users for your site, as

24

they only provide information about the user who is running jo!, but not about any other
users.

6.4 Howto write your own Authentication/Authorization

To write an authentication module for users only is pretty simple. Just write a class that
implements the interface com.tagtraum.jo.security.I_JoAccessController.

public interface I_JoAccessController {

public I_JoServletService getService();

public void setService(I_JoServletService service);

public Principal getPrincipal(String username);

public byte[] getHash(String username, String realm);

public char[] getHexHash(String username, String realm);

public boolean isValid(String username, String password);

}

Please note that the methods getHash() and getHexHash() are only needed for (the
unpopular) Http Digest Authentication. Therefore they are optional. There are some sample
implementations of this interface:

• com.tagtraum.jo.security.JoFileUserManager

• com.tagtraum.jo.security.JoJAASAccessController

• com.tagtraum.jo.jboss.JoAuthentication

Only the first class builds an internal hierarchy of users and groups. I.e. getPrincipal()
does not only return users, but also groups (i.e. they share the same namespace). For a real
world implementation you might want to make sure, that you do the same. The classes
JoGroup and JoPrincipal might come in handy, if the number of users isn’t too high and
you can keep all of them in memory.

However, this is only the authentication part for users and groups. Probably you also want to
assign users and groups to roles. To do so, you have to implement the interface
com.tagtraum.jo.security.I_JoRoleManager.

public interface I_JoRoleManager {

public I_JoServletService getService();

public void setService(I_JoServletService service);

public String[] getRoleNames(String name,
I_JoAuthConstraint authConstraint);

public boolean isUserInRole(String name, String roleName,
I_JoAuthConstraint authConstraint);

}

As an example this interface is implemented in the class
com.tagtraum.jo.security.JoFileRoleManager.

Both role methods are called in a context, when a user wants to access a resource that is
protected. But only, if the user is in a certain role, he or she is allowed to access the
resource. The provided I_JoAuthConstraint object tells you, which roles the user must

25

have for a requested resource. For your implementation you might want to use the class
JoRole.

Both I_JoRoleManager and I_JoAccessController need to use each other. They can do so by
calling the methods getService().getRoleManager() and
getService.getAccessController().

To install your newly written classes you have to edit the file
JO_HOME/etc/factory.properties. Just substitute the values for AccessController
and RoleManager with the names of your classes and restart the server. That’s it.

6.5 General security

In order to make jo! secure, please remove all web application not provided by
yourself. There is no guarantee that example or test applications are secure!

If you don’t need the cgi servlet, disable it.

The invoker servlet is a natural security hazard. If you don’t need it, disable it.

Please note that there is absolutely no guarantee that jo! is secure. tagtraum industries will
not be liable for any damages caused by security holes. If you become aware of any security
issues, please notify tagtraum industries immediately. Thanks.

26

7 Virtual Hosts
jo! supports the concept of virtual or vanity hosts as defined in RFC 2616. These hosts are
hosts identified by the header field Host rather than the URL. This allows multiple virtual
hosts per physical server.

In order to register a host you have to edit the file hosts.properties in etc. It has the
following syntax:

<hostname>.hostnames=*|<hostname>[, <hostname>, ...]
<hostname>.eventlog=<URL to local file>|<filename>|NONE
<hostname>.eventloglevel=<a positive integer>
<hostname>.eventlogbuffer=<a positive integer>
<hostname>.accesslog=<URL to local file>|<filename>|NONE
<hostname>.accesslogbuffer=<a positive integer>
<hostname>.factory=<URL>|<filename>
<hostname>.webapp.<webappname>.mapping=<URI without trailing
‘/’>
<hostname>.webapp.<webappname>.docbase=<URL>|<filename>

Each virtual host has an internal name called <hostname>. The hostnames the host should
be accessible via the web are specified with the parameter <hostname>.hostnames. If
you would like this host to react to any hostname set the parameter to ‘*’. To install multiple
hosts, you need to specify all the entries above for each host, starting with a different
<hostname>. Note that no more than one host should be mapped to ‘*’.

Each host has two logfiles it writes to: an event log and an access log. Events are
exceptions, data logged by servlets and other messages. To take influence on how detailed
events are logged you can specify the parameter <hostname>.eventloglevel. A value
of zero means no logging at all, one means error logging, two module level and three is
method level, i.e. the higher the level the more messages you will get. Both logs are
buffered. You can set the buffer size with the parameters <hostname>.eventlogbuffer
and <hostname>.accesslogbuffer. Both have default values of 25, i.e. 25 log events,
not bytes or kb.

If you set the name of the logfile to NONE, no logevents are actualle written to a file.

Note that the log file name properties support system property expansion. I.e. strings like %
user.home% are automatically expanded.

The access log contains access data in common log format. You can change this by
changing the entry AccessLogEvent in the file factory.properties.

Just like most other parts of jo! the classes in hosts are instantiated through a factory. Each
host has a separate one you can configure through a configuration file. This file can be set
with <hostname>.factory. It is safe to leave this parameter untouched.

The last two parameters should be used to register web applications. Note the at least one
application needs to be registered per virtual host. For more information and how to deploy a
web application without having to register it manually, please see Chapter 4.

27

8 Server properties
Of course there also some serverwide features you might want to manipulate. To do so,
please edit the file server.properties in etc. It should look like this:

<servername>.name=<servername>
<servername>.log=<local URL or file>|NONE
<servername>.loglevel=0..?
<servername>.logbuffer=0..?
<servername>.stdout=<local filename>
<servername>.stderr=<local filename>
<servername>.maxhandlerthreads=<positive integer>
<servername>.minhandlerthreads=<positive integer>
<servername>.maxrequests=<positive integer>
<servername>.keepalive=<positive integer>
<servername>.so_timeout=<time in ms>
<servername>.handlerclassname=<handlerclassname or alias>
<servername>.majorversion=<positive integer>
<servername>.minorversion=<positive integer>
<servername>.factory=<URL or filename>
<servername>.maxcacheentrysize=<integer>
<servername>.cachecapacity=<integer>
<servername>.strongrefcapacity=10
<servername>.authentificator.BASIC=<handlerclassname or
alias>
<servername>.authentificator.DIGEST=<handlerclassname or
alias>
<servername>.authentificator.FORM=<handlerclassname or
alias>
<servername>.group=<groupname>
<servername>.user=<username>

8.1 The server log

The server log contains messages about starting and stopping the server. It does not contain
any access logs or host/servlet-specific events. Its location can be set via the
<servername>.log parameter. This parameter also supports system property expansion.

To take influence on how detailed events are logged you can specify the parameter
<servername>.loglevel. A value of zero means no logging at all, one means error
logging, two module level and three is method level, i.e. the higher the level the more
messages you will get.

The semantic of log levels might change in future releases.

Besides normal log messages you can re-route standard error and standard output streams
to files. The parameters used for this are <servername>.stdout and
<servername>.stderr

8.2 Handlers

As jo! has an advanced thread management you can control the maximum and minimum
number of handlerthreads. The more threads you have, the more connections can be
handled concurrently. Note that this does not necessarily accelerate your system. The
contrary can be the case: requests might be responded to slower, because the system is

28

busy with switching between threads. On the other hand it is obvious that a single thread
doing all the work is not an optimal solution either. In order to find the best value you have to
experiment with the system you want to run the server on.

However, values can be set via the <servername>.maxhandlerthreads and
<servername>.minhandlerthreads parameter.

Additionally it is possible to set the classname or a classname alias with the parameter
<servername>.handlerclassname.

If the server has not handled any requests for a while it can automatically reduce the number
of instantiated handlerthreads to a smaller number and eventually to the minimum. The idle
time can be set with the parameter <servername>.so_timeout. Note that the value has
to be set in milliseconds.

8.3 Persistent connections

jo! is able to use persistent connections. As connections are a valuable resource it is
desirable to be able to configure jo!’s exact behavior. Therefore you can set the maximum
number of acceptable requests per connection with the parameter
<servername>.maxrequests. You might also set the time jo! keeps a connection open
waiting for the next request. This is done via <servername>.keepalive. The value must
be set in seconds.

8.4 Versions

jo! allows you to set its version. The version number will be sent to user agents as part of the
response header. It has no other meaning. You can manipulate the version through
<servername>.majorversion and <servername>.minorversion.

8.5 Factory

Some classes used to fulfill certain roles inside of jo! are instantiated by a configurable
factory. You can set the file to use with the parameter <servername>.factory.

The most important classes instantiated by the server factory are service (alias:
ServletService), host (alias: Host), listener (alias: Listener) and handler (alias: Handler).

In most cases it is safe to simply reference the file factory.properties in etc.

8.6 File cache

To configure the file cache you can set two parameters: the maximum cache entry size in
bytes and the cache’s capacity in bytes.

The maximum cache entry size is the maximum size files are allowed to have in order to be
added to the cache. To set is use the parameter <servername>.maxcacheentrysize. It
makes sense to limit this to 100.000 bytes as according to SPEC 99% of the files requested
are usually smaller than 100kb. If you don’t set a maximum entry size you have to set this
parameter to a negative value.

jo!’s file cache is memory sensitive. I.e., it uses as much memory as available to the Java
VM. However, if you don’t want to rely on the correct implementation of your VM and the
quality of the garbage collector, you can set the maximum cache size via the
<servername>.cachecapacity parameter. If you do not want to limit the cache’s
capacity set this parameter to a negative value.

Also, if your VM tends to collect garbage a lot, the cache might be cleaned sooner than
expected. Therefore you can set a number of strongly referenced cache entries. These

29

entries will never be cleared by the garbage collector and behave in a least recently used
manner. The parameter to set is <servername>.strongrefcapacity.

Sun VM 1.3.1-1.5.x can also be tuned with the parameter -XX:
SoftRefLRUPolicyMSPerMB. This parameter regulates, how many milliseconds per free
mbyte heap memory the garbage collection shall wait, until the reference is cleared. Note
that for the server VM the total possible heap size is used for the calculation, while for the
client VM the current heap size is used.

8.7 Authenticators

jo! supports pluggable authenticators you can register by configuration. In order to do so you
have to add a line similar to this:

<servername>.authenticator.<authmethod>=<classname or class
alias>

<authmethod> can be BASIC, DIGEST, FORM or other schemes. It must match the value
authmethod set in web.xml. Note that CERT is not supported yet.

8.8 Changing the user after starting jo!

On Unix systems it is desirable to start a web server as root, so that it can bind to port 80
and then change to a user with less privileges. In pure Java this is not possible. However, jo!
comes with a shared object for Linux x86 that can be used to achieve the desired behavior.

- Set both <servername>.user and <servername>.group to the desired values.

- Make sure your VM runs as a single process. For Sun JDK 1.3.1 you have to set the
flag –classic right after the java command. Edit the start up script accordingly.

- Make sure all paths are accessible to the user you want to run jo! under. This also
applies to directories that are created by jo! like JO_HOME/work and
JO_HOME/temp.

To change the user under different Un*xes than Linux, edit the file
JO_HOME/src/c/tagtraum.c, modify JO_HOME/build.xml to properly compile
tagtraum.c, and run ant compile.

30

9 Configuring a listener
As already described in 2.2 jo! accepts connections with listeners. There can be multiple
listeners for a single server. Each listener accepts connections on a single port and a single
address or a single port and all valid addresses for the machine it runs on.

All listeners are configured in a single file called listener.properties located in etc.
The file looks like this:

<listenername>.port=<portnumber>
<listenername>.bindaddress=<address to bind to>
<listenername>.backlog=<length of connection queue>
<listenername>.classname=<classname or class alias>
<listenername>.protocol=SSL|TLS|<blank>
<listenername>.keystore=<URL or file>
<listenername>.keystoreformat=JKS|PKCS12
<listenername>.passphrase=<the keystore’s passphrase>
<listenername>.needClientAuth=true|false

9.1 Setting the port

In order to change the port of a listener, simply edit <listenername>.port. Note that
under Unix systems you might not be able to use a port less than 1024 if you are not root.

9.2 Setting the bind address

Simply edit <listenername>.bindaddress. If you want to listen on all addresses please
enter 0.0.0.0.

Note that Java™ looks up addresses over DNS before binding. If your computer
is not connected to a DNS, the server will start very slowly (due to a timeout). You
might want to change 0.0.0.0 into a real address. This should speed up the initial
binding.

9.3 Backlog

When all handlerthreads are busy, incoming connections must be queued. The maximum
length of this queue is set with the parameter <listenername>.backlog. When running
benchmarks it is important that this parameter is very high (e.g. 1000). For normal use a
value of 50 should be enough. Busy sites might have to set a higher value.

9.4 Listenerclass

In order to set the class used as listener you can use the parameter
<listenername>.classname. As value you can set a classname or a class alias that can
be resolved with the factory set for the service (see 8.5).

If you want to use a secure listener you have to set an appropriate classname here, i.e.
SSLListener, that is resolved to the corresponding class as defined in
factory.properties.

9.5 Using a secure protocol (e.g. SSL)

If you want to use a secure protocol like SSL (Secure Socket Layer) you can specify this with
<listenername>.protocol. Valid values are SSL or TLS. Note that the standard port for
SSL is 443 and that you have to set it manually!

31

In order to use a secure protocol you need a keystore with your server certificate. Specify
this with the <listenername>.keystore parameter and set the used format with the
<listenername>.keystoreformat parameter. Supported are JKS and PKCS12. As the
keystore is protected by a passphrase you have to state this with
<listenername>.passphrase.

If you want clients to prove their identity with a certificate, set
<listenername>.needClientAuth to true.

Note that jo! takes some more time to start when run with a secure protocol. This is due to
the fact that the class SecureRandom used in the implementation takes a very long time to
initialize.

Please see the JSSE documentation (available from Sun as optional package and since JDK
1.4 as part of the JDK) and the Java-Security mailing list (http://archives.java.sun.com/cgi-
bin/wa?S1=java-security) for further details.

9.6 How to get a signed certificate from a certification authority (CA)

In order to get a certificate from a CA such as http://www.verisign.com/ you have to generate
a Cerificate Signing Request (CSR), send this to a CA, and install the returned signed
certificate. You might also have to install a root certificate by your ca (step 4). Note that RSA
is not supported by all JDK versions. We successfully tested it with Sun JDK 1.3 for
Windows

1. Generate a self signed certificate using the keytool program provided with your JDK.
Note that the common name (CN) must not contain spaces.
keytool –genkey –alias <somename> -keyalg rsa

2. Generate the CSR:
keytool –certreq –file <somename>.csr –alias <the above used
aliasname>

3. Submit the CSR to the CA of your choice.

4. (If you are using a CA other than VeriSign or using a test certificate by VeriSign you need
to import a root certificate for the CA.
When using VeriSign just follow the instructions for installing the Trial CA Root in your
browser, but shift-click the accept-button. Rename the now downloaded file to something
ending with .cer. This is the Trial CA Root certificate. Then import it with the keytool:
keytool –import –alias <alias for the CA> -file <the CA’s
certificate>
Note that you have to install the certificate in your browser, too. To do that, simply follow
the instructions by VeriSign.)

5. Import the signed certificate returned by the CA. Before doing that make sure that there
is a linefeed character after the last line:
keytool –import –trustcacerts –alias <the aliasname used in step
1> –file <the returned certificate>

6. Reference the used keystore (typically a file called .keystore in your home directory)
with <listenername>.keystore and set <listenername>.keystoreformat to JKS.

Further information about using the keytool can be found in the JDK documentation.

32

10Servlets
jo! comes with some servlets to ease your life a bit.

10.1 Status

With the current release of jo! comes a servlet called
com.tagtraum.jo.servlets.HealthWatcher. It is basically a servlet that gives you
some status information. Please note that the cachesize displayed by this servlet is not
precise.

10.2 CGI

The CGIServlet is installed in /cgi-bin/ and gives you the opportunity to execute CGI
programs. Note that this is currently only possible for executables or batch files. On
Windows machines perl scripts will not be executed correctly.

10.3 Invoker

Sometimes it is useful to invoke servlets without having to register them in the web.xml
configuration file. This can be achieved with the InvokerServlet
(com.tagtraum.jo.servlets.InvokerServlet). The servlet is usually mapped to /
invoker/* and interprets the following path element as classname of a servlet it then
executes.

E.g.
http://127.0.0.1:8080/invoker/com.tagtraum.jo.servlets.SnoopServlet
executes the servlet with the classname com.tagtraum.jo.servlets.SnoopServlet.

Note that the invoker introduces a vulnerability as every servlet in the classpath
can be executed by any user!

33

11 Debugging with jo!
Debugging with jo! is quite simple. It probably works best with an IDE:

1. Make sure that all jars in JO_HOME/lib and JO_HOME/system are in your classpath

2. Set com.tagtraum.jo.gui.MainController (with GUI) or
com.tagtraum.jo.JoIgnitionNG (without GUI) as main class

3. If possible, set the jo1.1/-directory as your working directory

4. Set ./etc/ as command line argument, if you can specify a working directory. If not, set
the environment variable JO_HOME to the jo! installation directory (using the -D syntax)
and specify the JO_HOME/etc directory as an absolute path as argument.

5. Now start your VM in debug mode

Additionally it is very useful to provide a jo.xml file for your web application with auto-reload
and send-errors-to client-enabled. See section 4.3 and following for details.

Please note that jo! supports JSR-45 (debugging of other languages,
http://www.jcp.org/en/jsr/detail?id=45). This means that a debugger also supports JSR-45,
lets you debug JSP also on the JSP level, not only the Java level. You have to make sure
however that the webapp you want to debug is in the sourcepath of the debugger. This
means that if you have a webapp at .../webapp/host/mywebapp you should add this
basepath of your webapp as a sourcepath to your debugger. You might also have to set the
debugger's stratum to JSP.

Example:

JSwat (http://www.bluemarsh.com/java/jswat/) is a free, open source, standalone Java
debugger licensed under GPL. To debug JSP in JSwat, follow these instructions:

1. Add the base directory of your webapp to the sourcepath.

2. Go to the Options->Preferences->Misc dialog and enter the values as shown in the
screenshot.

3. Go to the VM->Start VM dialog.

34

4. Specify all VM options.
As Java Home, specify the base directory of your Java SDK (a.k.a. JAVA_HOME).
The JVM executable is typically java.
Under Debuggee VM options you will need to specify the -D parameter JO_HOME and the
classpath, which should contain all jars in the system and lib directories of your jo!
Installation.
Under class name and arguments you have to specify the class
com.tagtraum.jo.gui.MainController and as argument the absolute foldername
to your etc directory (typically in JO_HOME/etc/).

5. Push the OK button. This will start up the server.

6. Open the JSP you want to debug using JSwat's File open dialog and set your
breakpoints.

7. Invoke the JSP through your browser. You should no be able to debug your JSP.

35

12Building jo! from source
jo! is an open source project. I.e. all sources necessary to build jo! are included in the
distribution.

To build jo! from source, you have to have a recent version of the build tool ant
(http://jakarta.apache.org/ant/) installed.

To recompile jo!, simply change to JO_HOME and execute ant compile.

36

13 Integration
Of course jo! can be integrated with other applications. The following sections describe how
this can be done.

13.1 Embedding jo! in other applications

A major advantage of using a pure Java™ web server is, that it is easy to embed in other
applications. Possible resulting products are CD-ROM catalogues or in general software that
should be easy to run on multiple platforms. To do this with jo! simply add some lines like the
following to your program:

import java.net.*;

import com.tagtraum.jo.*;
import com.tagtraum.jo.builder.*;
import com.tagtraum.framework.util.*;
import com.tagtraum.framework.server.*;

...

URL theURL = new URL("http://myconfig.host.com/")
I_Builder theJoBuilder = (I_Builder) new
JoPropertyServiceBuilder();
theJoBuilder.setName("jo");
theJoBuilder.setURL(theURL);
I_JoServletService theService = null;
try {

theService = (I_JoServletService)theJoBuilder.build()
theService.start();
...
// insert your business logic here – jo! is now available
...
theService.stop();
...

}
catch (BuildException be) {

System.err.println(be);
}
catch (ServerException se) {

System.err.println(se);
}

...

The name jo has to reflect the <servername> in the file server.properties. The
variable theURL has to point at a folder, not a file. The resulting I_JoServletService-
Object can be started, stopped and restarted via the methods start(), stop(), and
restart(). All of them may throw the exception com.tagtraum.framework.server.-
ServerException.

13.2 JBoss

Using jo! inside of JBoss is not supported any more.

37

13.3 Avalon-Phoenix

Please use jo! 1.0 for Avalon-Phoenix.

38

14 Starting and stopping jo! from a remote machine
When jo! is started with the jo_ng script, a little server is started on the machine the script is
run on. This server can be configured with the files /etc/metaserver.properties and /
etc/metalistener.properties.

Edit metaserver.properties so that the hostname of your client machine is listed in
MetaServer.validaddresses= ... If it is not listed, it is not allowed to connect to the
MetaServer.

Edit metalistener.properties so that localhost.bindaddress is either 0.0.0.0
or the real IP address of that machine, but not 127.0.0.1.

You now can 'talk' with this server from a remote machine using the Script metaclient.sh,
metaclient.bat or simple telnet. Just like telnet the metaclient scripts need the IP
address or hostname of the server and the port as argument! E.g.:

metaclient.bat foo.bar.com 9090

Or:

telnet foo.bar.com 9090

Note: You are not authenticating yourself in any other way than your IP address.
So this is not secure!

Once you are connected with the MetaServer you can start and stop jo! using the following
commands:

start jo

stop jo

To stop the MetaServer, type:

stop MetaServer

To exit the client (not the server):

exit

Instead of using the metaserver you should consider using an MBean server and starting jo!
as Mbean (see 3.3).

39

15 Running jo! behind a proxy
Sometimes it is desirable to run jo! behind a proxy. This can lead to problems with URL-
rewriting especially in connection with the Jakarta Struts framework. Struts creates the
rewritten URLs as absolute URLs pointing to the server the webapplication runs on. If jo!
runs behind a proxy, those URLs should point to the proxy, but do point to jo! In order to
convince jo! that he really should return the name and port of the proxy as server name and
server port, you may install a request interceptor.

Simply edit the file server.properties so that it contains the following entries:

<servername>.requestinterceptor.hostrewrite=com.tagtraum.jo.
requestinterceptor.HostRewrite
<servername>.requestinterceptor.hostrewrite.parameters=<jo-
hostname>[:<jo-port>]=<proxy-hostname>[:<proxy-port>][, ...]
<servername>.requestinterceptor.hostrewrite.order=1

If you are using Apache as a proxy, you should configure it like this:

LoadModule proxy_module modules/mod_proxy.so
LoadModule proxy_connect_module modules/mod_proxy_connect.so
LoadModule proxy_http_module modules/mod_proxy_http.so

<IfModule mod_proxy.c>
ProxyRequests On

<Proxy http://<proxy-hostname>/<proxy-path>/*>
ProxyPass http://<jo-hostname>/<jo-path>/
ProxyPassReverse http://<jo-hostname>/<jo-path>/
Options Indexes FollowSymlinks MultiViews

AllowOverride None
Order allow,deny
Allow from all

</Proxy>

For more information about the Apache proxy module, please look at the Apache
documentation at http://www.apache.org/.

40

16 Setting VM parameters
In order to set VM parameters like max heap size, simply edit the startupscripts accordingly.

If you are running jo! as a Windows service, you will have to uninstall and re-install the
service using the script uninstall_joservice.bat and install_joservice.bat. Before re-installing
the service, edit the script install_joservice.bat accordingly.

41

17 Setting the browser for viewing the documentation
On Unix/Linux systems jo! will try to launch Netscape for displaying the documentation. This
requires a correct installation of Netscape and the Adobe Acrobat Reader plugin
(http://www.adobe.com/products/acrobat/). If you prefer a different viewer than Netscape,
you may edit the file jo.properties in your home directory. Simply set the entry browser
to the value of your choice. E.g. browser=konqueror for KDE-users.

42

18 Loadbalancing
For scalability you might need to run jo! on multiple machines. You can do this successfully
with hardware oriented devices which serve exactly that purpose. But usually these devices
are very expensive. So you might want to try a cheap solution first. Such a solution is
jobalancer. It is a little experimental load balancer that works as described below.

jobalancer accepts connections and basically forwards them to other registered servers. If
one of the servers becomes unavailable (e.g. due to a crash, a network problem,
maintenance, etc.), a different server will be taken. The server also is then marked as
unavailable for a while. In order to allow sessions to work, requests from one IP address will
always be forwarded to the same server (sticky). This also means that once a server
becomes unavailable all sessions on that particular server are lost.

jobalancer can be configured with the file /etc/balancer.xml.

Example:

<?xml version="1.0" encoding="UTF-8"?>
<!--
This is the experimental configuration file for JoBalancer,
a tool for balancing the load for
several jo!s on different servers.
-->

<balancer>
<!--
These parameters are pretty similar to jo!s
-->
<service>

<name>JoBalancer</name>
<handler-

class>com.tagtraum.jobalancer.JoBalancerHandler</handler-
class>

<version>
<major>0</major>
<minor>0</minor>

</version>
<log-config>

<file>../log/balancer.log</file
<level>2</level>
<buffer-size>0</buffer-size>

</log-config>
<thread-config>

<min>5</min>
<max>100</max>
<pool-reduction-timeout>5000</pool-reduction-

timeout>
</thread-config>
<listener>

<name>Localhost</name>
<address>0.0.0.0</address>
<port>8081</port>
<backlog>50</backlog>

</listener>

43

</service>

<!--
Servers at the back end. Requests are delegated to these.
-->
<server>

<address>127.0.0.1</address>
<port>8080</port>

</server>
<server>

<address>127.0.0.1</address>
<port>8079</port>

</server>

<!--
Requests from a particular IP address will always be
delegated to the same server, unless there hasn't been a
request for the specified timeout in min.
-->
<sticky-timeout>30</sticky-timeout>

<!--
If a connection to a server couldn't be established it is
marked unavailable for a certain time (in min). After this
time is over it is contacted again.
-->
<unavailable-timeout>1</unavailable-timeout>

</balancer>

44

19 Performance-Tuning
If you want to test the performance of jo!, please make sure that you consider the following.

- disable auto-reloading of servlets and JSP

- give as much memory to the VM as possible

- enable the cache

- set the cache’s strong referenced parameter to a high value (depending on your
memory and on your max cache entry size)

- use the non-gui version

- set all loglevels to 0 (don’t do this in a production environment)

- set the log buffers to a value that is at least as high as you expect requests per
second

- experiment with server.maxrequests and server.keepalive depending on
what version of HTTP you use for your test

- experiment with listener backlog

- if you are using a Sun VM, use the HotSpot server version

We are always interested in performance numbers. If you have any, please send them along
with an exact description of your test to <feedback@tagtraum.com>. Thanks!

45

20 Feedback and mailing list
If you have any question or comment about jo! – good or bad, please send mail to
<feedback@tagtraum.com>. I am very eager to improve jo!, make it faster, even more stable
and better fitting your needs. In case you find any bugs, please send mail to
<bugs@tagtraum.com>.

Please join the announcement mailing list by sending a mail to <listserv@tagtraum.com>
containing ‘subscribe jo’ in the body of the message.

Or, if you are interested in helping developing jo!, please join the developer’s mailing list at
http://lists.sourceforge.net/lists/listinfo/tagtraum-jo-development.

Thank you for using jo!

46

21 References
• Servlet API, http://java.sun.com/products/servlet/

• JSP, http://java.sun.com/products/jsp/

• J2EE, http://java.sun.com/j2ee/

• RFC 1630 Uniform Resource Identifiers (URI)

• RFC 1738 Uniform Resource Locators (URL)

• RFC 1808 Relative Uniform Resource Locators

• RFC 1945 Hypertext Transfer Protocol (HTTP/1.0)

• RFC 2045 MIME Part One: Format of Internet Message Bodies

• RFC 2046 MIME Part Two: Media Types

• RFC 2047 MIME Part Three: Message Header Extensions for non-ASCII text

• RFC 2048 MIME Part Four: Registration Procedures

• RFC 2049 MIME Part Five: Conformance Criteria and Examples

• RFC 2109 HTTP State Management Mechanism

• RFC 2145 Use and Interpretation of HTTP Version Numbers

• RFC 2616 Hypertext Transfer Protocol (HTTP/1.1)

• RFC 2617 HTTP Authentication: Basic and Digest Authentication

You can locate the online versions of any of these RFCs at: http://www.rfc-editor.org/

47

